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of entropy. Locality requires that this entropy adds on space-like surfaces, but the re-

sulting entropy (1010 times the Bekenstein-Hawking entropy in an example presented in

the companion paper) exceeds the maximum entropy that can be accommodated by the

black hole’s degrees of freedom. Observer complementarity, which proposes a proliferation

of non-local identifications inside the black hole, allows the entropy to be accommodated

as long as individual observers inside the black hole see less than the Bekenstein-Hawking

entropy. In the specific model considered with huge entropy production, we show that indi-

vidual observers do see less than the Bekenstein-Hawking entropy, offering strong support

for observer complementarity.
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1 Introduction

In a companion paper, we found that the entropy produced inside a charged black hole can

exceed the entropy released in the black hole’s evaporation by many orders of magnitude [1].

If locality holds for black holes, then entropy is additive on space-like slices, and the excess

entropy example in [1] violates the second law of thermodynamics.1 However, locality

has been called into question in the case of black holes. Susskind et al. [2] have argued

that unitarity requires non-local identifications between degrees of freedom inside the black

hole and degrees of freedom outside, an idea known as black hole complementarity. The

interior and exterior offer different, complementary views of the same degrees of freedom.

Therefore, entropy on the interior does not add to entropy outside, and the excess entropy

example does not violate the second law.

By identifying the interior and exterior degrees of freedom, black hole complementarity

limits the number of degrees of freedom inside the black hole to the number seen from the

outside perspective. The entropy computed in the excess entropy example is far too large

(by a factor of 1010) to be accommodated by those degrees of freedom. A stronger form of

complementarity, observer complementarity, proposes additional non-local identifications

across every observer horizon [3–5]. Observer complementarity predicts that while the

entropy on space-like surfaces inside the black hole may exceed the Bekenstein-Hawking

entropy, the entropy seen by individual observers cannot. We show that even with the

huge entropy seen in the excess entropy example, individual observers see less than the

Bekenstein-Hawking entropy. This is a strong confirmation of observer complementarity.

1Entropy in this paper is always the entropy used in practical thermodynamic calculations, found by

ignoring all quantum entanglements beyond some coarse graining scale.
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2 Black hole thermodynamics supports black hole complementarity

Even when there is no entropy created inside the black hole, certain choices of space-like

time slices can show apparent violations of the second law, as explained below.2 Black hole

complementarity resolves this conundrum by proposing nonlocal identifications between the

interior and exterior of the black hole, making the interior entropy redundant. When the

interior entropy is ignored in accordance with black hole complementarity, the second law is

restored. Unitarity arguments already support the idea of black hole complementarity [2],

but the thermodynamic argument below will clarify some of the ideas involved in the

discussion of observer complementarity which begins in section 3.

To an outside observer, black holes behave like any other black body. The black hole’s

entropy is the Bekenstein-Hawking entropy, SBH. When entropy falls into a black hole the

horizon area always increases enough to prevent a violation of the second law. In general,

the entropy that goes into the formation of the black hole is much less than SBH, so black

hole formation is a thermodynamically irreversible event [6].

A black hole’s temperature is given by dE = T dS, where the energy E of the black hole

is its mass. Like any warm black body, a black hole radiates. Black holes are unusual in that

their temperature increases as their energy decreases, so they will radiate all of their energy

in a finite time, ending with an explosion. Black hole evaporation is thermodynamically

irreversible — the entropy released during evaporation is somewhat higher than the black

hole’s entropy, Sevap ≈ 3
2SBH.3 As viewed by outside observers, entropy increases at every

stage from formation to evaporation, in accordance with the second law.

The above story of increasing entropy is vague about where the black hole’s entropy

resides and how it is reemitted as Hawking radiation. To add some clarity, one could follow

the entropy as it flows through the black hole space-time, adding the entropy on space-like

slices, as dictated by locality. The entropy should increase from one slice to the next in

accordance with the second law. However, this integration can lead to apparent violations

of the second law, even when no additional entropy is produced inside the black hole.

To see the apparent violation of the second law, consider the space-like “nice slice”

shown in figures 1 and 2 [9]. This slice avoids Planck scale densities and curvatures, and is

intersected by all of the entropy that falls into the black hole and by much of the Hawking

radiation. An explicit case of a violation occurs if, for example, the entropy of the material

forming the black hole is approximately 5
6 of the Bekenstein-Hawking entropy, and the slice

intersects the horizon when a third of the mass has radiated away.

Sint + Sext ≈
5

6
SBH +

3

2

[

1 −
(

2

3

)2
]

SBH =
5

3
SBH . (2.1)

2Locality is the quantum-field-theory proposition that space-like separated operators commute. Com-

muting operators identify distinct degrees of freedom. The entropy associated with distinct degrees of

freedom is additive, so locality requires entropy to add on space-like slices.
3The ratio of Sevap to SBH depends on the number and polarizations of particle species radiated during

evaporation. Inclusion of three massless neutrinos and their antiparticles gives Sevap ≈ 1.6187 ·SBH [7]. We

now know know that at least some of the neutrinos have mass which, while small, exceeds the Hawking

temperature of a typical astronomical black hole. If all neutrinos are massive, Sevap ≈ 1.4848 · SBH [8].
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Figure 1. The total entropy on the

space-like nice slice can exceed the final

entropy, Sevap.

Figure 2. The nice slice, which looks rather

convoluted in figure 1, is perfectly natural in

the Penrose diagram.

This exceeds Sevap ≈ 3
2SBH, leading to a decrease in entropy when the black hole evaporates,

in violation of the second law.

The source of this violation is, of course, the entropy inside the black hole. The prob-

lem can be avoided entirely by taking the total entropy to be only the external entropy.4

Black hole complementarity, which was originally proposed to protect unitary black hole

evolution, provides a rationale for counting only the outside entropy. Black hole comple-

mentarity asserts that the interior of the black hole offers a complementary perspective on

degrees of freedom that are already accounted for in the exterior description. This means

that there are nonlocal identifications between interior and exterior degrees of freedom.

Interior and exterior operators do not commute, violating locality across the horizon.

For an outside observer, black hole complementarity makes the interior of the black

hole redundant, so that the space-time effectively ends at the horizon. He sees anything

thrown into the black hole approach the horizon, but not cross it. Instead, infalling ma-

terial is incinerated in a thermal layer near the horizon and gradually reemitted as nearly

thermal Hawking radiation. Since the black hole reaches thermal equilibrium quickly in

the outside view, the entropy of the black hole, SBH, is maximal and reflects the number

of accessible states consistent with the black hole’s mass, angular momentum and charge,

4To get everything exactly right, there are subtle issues involved in counting the external entropy. The

external entropy includes the black hole’s thermal atmosphere. The external region must end a tiny bit

outside the actual horizon and entropy may need to be attributed to the boundary to account for the gap.

All of this accounting involves degrees of freedom outside the horizon [10].

– 3 –



J
H
E
P
0
9
(
2
0
0
9
)
0
1
6

SBH = ln ΩBH. We do not know the nature of the microscopic degrees of freedom that

give rise to these states, but ΩBH represents all of the states of the black hole. There are

no additional states reflecting the internal state of the black hole, because there are no

independent interior degrees of freedom.

3 Excess interior entropy necessitates a stronger complementarity

The observer who falls into the black hole sees something quite different from the external

observer. While she is outside the horizon she also sees the thermal horizon layer. As

she falls toward the horizon, the thermal layer moves into the black hole well ahead of

her [11]. If the black hole is very large she will notice nothing out of the ordinary when she

crosses the horizon. She can remember her past, perform local experiments, and admire

the distant stars, even as the outside observer believes that she is being incinerated in

the horizon boundary layer. In her view, she approaches the thermal layer only as she

approaches the singularity [11].

While the experiences of the inside and outside observers seem totally contradictory,

black hole complementarity tells us that the observations are not only compatible, but

actually represent complementary perspectives on the same degrees of freedom. The iden-

tification between the interior and exterior descriptions is very complicated and not known,

so an outside observer inspecting the horizon layer would not be able to determine what

the inside observer is doing as she falls toward the singularity.

While the identifications between states is complicated, the fact that they are identified

means that the interior description must have the same number of states as the exterior

description, ΩBH. In the interior description, objects are not cooked to equilibrium, so the

entropy is not the maximum allowed by the number of states. Therefore,

Sint ≤ SBH . (3.1)

This inequality can be checked in any particular case by calculating the entropy seen in

the interior description. In the companion paper [1], we calculated the entropy created

inside an accreting, electrically charged black hole.5 As the accreted, conducting matter

falls toward the singularity, the black hole’s electric fields create strong currents resulting

in extravagant entropy creation. Adding this entropy over space-like time slices inside the

black hole violates the bound (3.1) by an enormous factor.

Just as in section 2, the entropy has been over-counted, pointing to a breakdown of

locality inside black holes. This time the breakdown is much more dramatic than the one

proposed by black hole complementarity. Since the entropy exceeds SBH by a huge factor,

there must be a proliferation of complementary descriptions of the black hole’s interior,

each description having less than the Bekenstein-Hawking entropy.

5Charged black holes are not thought to be realistic. However, real black holes are expected to have

significant angular momentum. Since charged black holes have many of the same features as spinning black

holes, while being easier to study, charge is often used as a surrogate for angular momentum.

– 4 –
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Figure 3. The Penrose diagram of the black hole’s interior. Close to the singularity more observer

horizons are required to cover the space-like slice.

Observer complementarity asserts that every observer sees all of the black hole’s de-

grees of freedom [3]. Since every observer in the black hole interior has her own observer

horizon (figure 3), observer complementarity proposes an elaborate web of identifications

in the black hole’s interior, far more identifications than black hole complementarity.6 If

observer complementarity is correct, entropy should not be added across observer hori-

zons, and only the entropy seen by individual observers must be less than the Bekenstein-

Hawking entropy. Indeed, we will show in the next section that individual observers in

the excess entropy example do not see an excess of entropy. This offers strong support for

observer complementarity.

4 Observer complementarity solves the problem of excess interior

entropy

The model studied in the companion paper has matter falling into the black hole contin-

uously. Rather than finding the total entropy seen by the infalling observer, we calculate

only the observed entropy, ∆Sobs, of matter falling into the black hole in the vicinity of the

infalling observer, shown in figure 4. This will be compared to the increase in the entropy

of the black hole, ∆SBH, caused by the same matter as it falls through the horizon. ∆SBH

is found from the increase in the horizon area seen by the outside observer, and is much

larger than the entropy of the infalling matter as it falls through the horizon (by a factor

of 1019 in the excess entropy example).

The matter falls along with the infalling observer, heating and increasing in entropy.

Eventually this matter begins to leave the observer horizon. The entropy per baryon

diverges, but the volume inside the observer horizon shrinks sufficiently quickly for the

total entropy seen by the infalling observer to be finite. The calculation in appendix A

shows that ∆Sobs is less than ∆SBH.

6Observer complementarity has been pursued primarily in deSitter spaces, where every observer is sur-

rounded by a horizon that behaves much like a black hole horizon [3].

– 5 –



J
H
E
P
0
9
(
2
0
0
9
)
0
1
6

Infalling     Observer

Horizo
n

S
in

g
u
la

ri
ty

1010 1020 1030 1040 1050

10−20

10−10

100

1010

1020

Radius r (Planck units)
∆S

/∆
S B

H

horizon

Planck
curvature

∆
S

start / ∆
S

B
H

∆
S

obs / ∆
S

B
H

Figure 4. The observer horizon is the con-

verging light cone that reaches the infalling

observer just as she reaches the singularity.

Figure 5. The entropy that will eventually

pass through the observer horizon, ∆Sobs, is

only slightly greater than the entropy within

the observer horizon, ∆Sstart at any radius.

The exact amount of entropy seen will depend on the size of the vicinity used in the

calculation. If the vicinity is chosen so that matter starts leaving the observer horizon

when it has an entropy ∆Sstart, then the total entropy seen by the infalling observer before

she hits the singularity, ∆Sobs, is of the same order of magnitude as ∆Sstart. Figure 5

shows both ∆Sstart/∆SBH and ∆Sobs/∆SBH as functions of the radius at which the matter

starts to leave the horizon. If the vicinity is large enough that the matter starts leaving the

observer horizon as soon as it goes through the black hole horizon, a reasonable starting

point, then ∆Sobs ≈ 10−19∆SBH.

Picking too small of a vicinity can give a value of ∆Sobs that is greater than ∆SBH,

but this is of no physical significance. One might hope to exceed the bound (3.1) by only

dropping matter into the black hole in a tiny cloud near the infalling observer, so that none

of it leaves until the entropy of the cloud has exceeded ∆SBH. However, this situation is

totally different from the continuous feeding of the black hole in the excess entropy example.

There is no reason to believe that the values of ∆Sobs/∆SBH in figure 5 would hold for

the small cloud. There are huge pressures compressing the matter in the excess entropy

example. Without those pressures the cloud would leave the observer horizon much earlier,

greatly reducing ∆Sobs.

The case considered in the companion paper is a bit unusual in that it has periodic self-

similarity, which results in the pulses of entropy production seen in figure 5. Generic choices

of conductivity do not produce pulses. These generic cases also have ∆Sobs ≪ ∆SBH, as

discussed in appendix A.
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5 Conclusion

Infalling observers see less than the Bekenstein-Hawking entropy, which is consistent with

the number of degrees of freedom of the black hole. Observer complementarity for-

bids adding entropy across horizons, so the problem of excess entropy inside black holes

is avoided.

If an individual observer could see excess entropy then an even stronger set of identi-

fications would be required. No stronger complementarity has been proposed, and none is

likely since the non-locality would be visible to the observer, a startling idea.

The excess entropy model is astrophysically realistic. However, the limits on entropy

should hold even for wildly unrealistic black holes. It is possible the the Bousso bound

guarantees that no observer can see more than the Bekenstein-Hawking entropy in any black

hole, but we have not investigated this adequately to draw a conclusion on this point.
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A Calculation of visible entropy

We wish to know if the observed entropy, ∆Sobs, is greater than the entropy increase of

the black hole, ∆SBH. In this section we calculate the ratio ∆Sobs/∆SBH and find that

it is much less than one in the excess entropy example [1], as well in examples with more

generic conductivities.

The entropy seen by the infalling observer, ∆Sobs, does not depend on her path, only

on the time at which she hits the singularity, since this determines her observer horizon.

Therefore, we will assume she travels on the z-axis (θ = 0), falling from the sonic point

along with the ingoing baryons.

The baryons that fall into the black hole will also start from the sonic point. The

baryon trajectories are parameterized by the conformal time they leave the sonic point, ηs,

and the spherical coordinates of the radial path that they follow into the black hole, θ and

φ. The addition of these baryons will cause an increase in the horizon area of the black

hole, thereby increasing the entropy seen by outside observers by ∆SBH

∆SBH =

∫

dSBH

dηs

sin θ dθ dφ

4π
dηs

=
1

2

dSBH

dηs

∫

sin θ dθ dηs , (A.1)

where dSBH/dηs is the horizon entropy increase per conformal time as seen by an outside

observer, which is constant over the times that we are considering (much less than the

accretion time). We divide this by 4π and integrate over the spherical angle of the region

– 7 –
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Figure 6. An observer falls along the θ = 0 axis. A nearby baryon falls through the sonic point

at conformal time ηs and at angle θ from the axis. Later, the baryon passes through the observer’s

past light cone at conformal radius Xlc intersecting the path of a photon with angular momentum

proportional to j. The azimuthal angle φ of the baryon is the same as that of the photon. The

observer horizon is the observer’s last past light cone, when Xobs goes to the singularity.

around the infalling observer to get the contribution of only those baryons in her vicinity.

Nothing depends on φ, so the φ integral is done immediately. The θ integral is left for later

in order to accommodate a change of integration variables.

These baryons will fall along with the observer, heating all the way, until they reach her

observer horizon. To calculate the entropy that she will see, the entropy falling through the

sonic point per conformal time, dSBH/dηs, is multiplied by the factor dSlc/dSs, representing

the increase in entropy during the fall (the subscript “lc” signifies the entropy on the light

cone that is her observer horizon):

∆Sobs =

∫

dSlc

dSs

dSs

dηs

sin θ dθ dφ

4π
dηs . (A.2)

The rate at which entropy falls through the horizon is constant over times much shorter

than than the accretion time, so dSs/dηs is constant and can be taken outside the integral:

∆Sobs =
1

2

dSs

dηs

∫

dSlc

dSs
sin θ dθ dηs . (A.3)

The factor dSlc/dSs depends on distance fallen by the baryons before they leave the horizon.

Only the baryons which fall into the black hole very close to the observer will have a huge

increase in entropy before leaving the horizon.

– 8 –
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Dividing equation (A.3) by equation (A.1) provides the desired ratio:

∆Sobs

∆SBH
=

dSs

dSBH

1

A

∫

dSlc

dSs
sin θ dθ dηlc

=
1

A

∫

dSlc

dSBH
sin θ dθ dηs , (A.4)

where

A =

∫

sin θ dθ dηs . (A.5)

The factor dSlc/dSBH is computed numerically in the companion paper for the specific

parameters of the excess entropy example. The integrals in equations (A.4) and (A.5) are

most easily performed over the observer horizon rather than over baryon trajectories. The

observer’s past lightcone has two halves, one consisting of ingoing photons and the other of

outgoing photons. Each half is composed of photon trajectories parameterized by φ and j

(j is proportional to the angular momentum and will be defined below). The parameter j

goes from zero, for photons falling along the θ = 0 axis, to infinity at the boundary between

ingoing and outgoing.

The position along the photon trajectories is best parameterized by the dimensionless

“ray-tracing” radial coordinate, X [12]. Since X is dimensionless, it is constant at the

sonic point and the horizon. X goes to −∞ at the singularity. We wish to determine

the amount of entropy seen by the infalling observer when she has reached Xobs, so we

will perform the integral over the light cone whose vertex is at Xobs. There is no need to

integrate over the entire light cone, only over some part that catches a sufficient amount

of the entropy near the infalling observer. We will start counting the entropy at Xstart and

find all of the entropy that passes through the light cone from there to Xobs. If Xstart is

inside the horizon, then we will be able to ignore turning points and other complications.

The resulting integral over the light cone is

∆Sobs

∆SBH
=

1

A

∑

ingoing
outgoing

∫ Xobs

Xstart

dSlc

dSBH

(
∫ ∞

0
sin θ |D| dj

)

dXlc , (A.6)

where D is the Jacobian determinant for the change of integration variables and

A =
∑

ingoing
outgoing

∫ Xobs

Xstart

∫ ∞

0
sin θ |D| dj dXlc . (A.7)

The expressions for the baryon trajectory parameters, φ, θ and ηs, must be found in

terms of the light cone parameters, φ, j and Xlc. The angle φ is the same for the infalling

baryon and the light cone photon.

The expression for θ requires a straightforward integration that depends on both j

and Xlc [12]

θ = ±
∫ Xlc

Xobs

J dX√
τ2 − HJ2

= j

∫ Xlc

Xobs

dX
√

1 − Hj2
, (A.8)

– 9 –
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where H is the homothetic scalar and τ is the proper time, which is constant for a photon.

We therefore replace J with j = ±J/τ . The positive sign is for ingoing photons, and the

negative for outgoing.

Notice that if −H grows slower than X2 for large −X, then the integral for θ would

diverge, and photons would make an infinite number of orbits before hitting the singularity.

However, in our models −H grows faster than X2, and we will use this fact to justify several

useful approximations in the calculation of the more general case.

Since ηs does not appear in the integrand, we will need only its derivatives with respect

to the light cone coordinates in order to find the Jacobian determinant. It is found in a

similar manner to θ [12]

ηs = ηobs ±
∫ Xlc

Xobs

dX

H
√

1 − Hj2
−

∫ Xs

Xlc

dX

ξtξr
. (A.9)

The last term is the change in η along the world line of the infalling baryons. It does not

have a sign change because the baryons are always ingoing.

The derivatives required for the Jacobian are

∂θ

∂Xlc
=

j
√

1 − Hlcj2
, (A.10)

∂θ

∂j
=

∫ Xlc

Xobs

dX

(1 − Hj2)
3
2

, (A.11)

∂ηs

∂Xlc
=

±1

Hlc

√

1 − Hlcj2
+

1

ξt
lcξ

r
lc

, (A.12)

∂ηs

∂j
= ±j

∫ Xlc

Xobs

dX

(1 − Hj2)
3
2

. (A.13)

The Jacobian determinant, |D|, is

|D| =

[

√

1 − Hlcj2

−Hlc
∓ 1

ξtξr

]

∫ Xlc

Xobs

dX

(1 − Hj2)
3
2

, (A.14)

where we have used the fact that the first term in the brackets is much larger than the

second in taking the absolute value. The term proportional to (ξtξr)−1 is positive for the

outgoing half of the light cone and negative for the outgoing half, so it will cancel out in

the sums.

The resulting equations are collected here:

∆Sobs

∆SBH
=

2

A

∫ Xobs

Xstart

dSlc

dSBH

(
∫ ∞

0
sin θ |Dave| dj

)

dXlc , (A.15)

A = 2

∫ Xobs

Xstart

∫ ∞

0
sin θ |Dave| dj dXlc , (A.16)

θ = ±j

∫ Xlc

Xobs

dX1
√

1 − H1j2
, (A.17)

|Dave| =

√

1 − Hlcj2

−Hlc

∫ Xlc

Xobs

dX2

(1 − H2j2)
3
2

. (A.18)
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These equations can all be integrated numerically using the techniques in the companion

paper. The result is shown in figure 5. The numerical calculation can be trusted for Xstart

inside the horizon. Pushing Xstart outside the horizon introduces turning points and other

challenges. The location of Xobs makes little difference as long as it is exceeds Xstart by a

few orders of magnitude.

The conductivity in the excess entropy example was chosen to give the pulses of

entropy production shown in figure 5. More generic choices of the conductivity give a

steady increase in entropy and the problem of finding the entropy seen by an individual

observer can be addressed without resorting to numerical integration. If the entropy

production is excessive, then the integrals in equation (A.15) will diverge as Xobs goes to

−∞, approaching the singularity.

To see that they do not diverge, recall that −H grows faster than X2, so the integrals

for θ and Dave are dominated by small −X. The integrands are 1 until the integral is cut

off at −Hj2 = 1. Since −Xlc is always smaller than −X1 and −X2, the cutoff in the X1

and X2 integrals also cuts off the j integral at Hlcj
2 = 1. Let Xj be the value of X where

−Hj2 = 1. Then

θ ∼ j

∫ Xlc

Xj

dX1 ∼ −jXj , (A.19)

|Dave| ∼
Xj

Hlc
. (A.20)

Since only the matter near the infalling observer poses an excessive entropy threat, θ is

small. The j integral in equations (A.15) becomes

∫ ∞

0
sin(θ) |Dave| dj ∼ −

∫ (−Hlc)
−

1
2

0
sin(jXj)

Xj

Hlc
dj

∼ −H−1
lc

∫ (−Hlc)
−

1
2

0
jX2

j dj . (A.21)

For generic values of the conductivity, −H grows like −X3, allowing us to find Xj = j−2/3.

Putting this into (A.21) gives

∫ ∞

0
sin(θ) |Dave| dj ∼ −X−3

lc

∫ (−Xlc)
−

3
2

0
j−1/3 dj

∼ X−4
lc . (A.22)

In order for the final integral over Xlc to diverge, ∆Slc/∆SBH would have to grow at least

as fast as −X3. However, the entropy grows only like (−X)3/4, too slowly to cause a

divergence. The entropy that will be seen by an infalling observer is of the same order as

the entropy inside his horizon at Xstart, far less than ∆SBH.
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